Recent Advances and Prospects of Chalcogenide Cathodes for Rechargeable Magnesium Batteries

Author:

Liu Yuehao1,Qu Baihua12ORCID,Li Shengyang12,Lian Xiaojin1,Luo Yuanyi3,Shen Xing2,Xu Chaohe12,Wang Jingfeng12,Pan Fusheng12

Affiliation:

1. College of Materials Science and Engineering National Engineering Research Center for Magnesium Alloys Chongqing University Chongqing 400044 China

2. Chongqing Institute of New Energy Storage Materials and Equipment Chongqing 401135 China

3. College of Energy and Power Engineering Chongqing University Chongqing 400044 China

Abstract

AbstractRechargeable magnesium batteries (RMBs) have garnered considerable interest from researchers and industries owing to their abundant resources, cost‐effectiveness, impressive energy density, and safety features, positioning them as a compelling technology for sustainable energy. Chalcogenides, with their high electrochemical activity and low charge density, facilitate the diffusion and migration of Mg2+. “Soft” anionic lattices, such as S or Se, weaken the Coulombic attraction between the crystal structure and Mg2+, thereby promoting the accelerated diffusion and reversible intercalation of Mg2+. Consequently, they are highly regarded as promising cathode materials for RMBs. However, their real‐world implementation is hindered by challenges including low conductivity, formidable ion diffusion barriers, and insufficient cyclic stability. In this study, chalcogenides are categorized into intercalation‐ and conversion‐types based on the Mg2+ storage mechanism, providing a comprehensive examination and taxonomy of various modification approaches aimed at enhancing the electrochemical performance of chalcogenides. These approaches include intercalation engineering, phase engineering, defect engineering, doping effects, and nanostructure engineering. Furthermore, specific modification strategies for certain chalcogenide cathode materials are summarized and discussed. Finally, the key points of optimization strategies for chalcogenide cathode materials are summarized, along with the proposed future breakthrough directions.

Funder

National Key Research and Development Program of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3