Mo‐Modified ZnIn2S4@NiTiO3 S‐Scheme Heterojunction with Enhanced Interfacial Electric Field for Efficient Visible‐Light‐Driven Hydrogen Evolution

Author:

Zhu Jiafeng1,Bi Qingyuan2,Tao Yinghao2,Guo Wenyao1,Fan Jinchen12ORCID,Min Yulin1,Li Guisheng2

Affiliation:

1. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power College of Environmental and Chemical Engineering Shanghai University of Electric Power Shanghai 200090 P. R. China

2. School of Materials and Chemistry University of Shanghai for Science and Technology Shanghai 200093 P. R. China

Abstract

AbstractDesigning and developing visible‐light‐responsive materials for solar to chemical energy is an efficient and promising approach to green and sustainable carbon‐neutral energy systems. Herein, a facile in situ growth hydrothermal strategy using Mo‐modified ZnIn2S4 (Mo‐ZIS) nanosheets coupled with NiTiO3 (NTO) microrods to synthesize multifunctional Mo‐modified ZIS wrapped NTO microrods (Mo‐ZIS@NTO) photocatalyst with enhanced interfacial electric field (IEF) effect and typical S‐scheme heterojunction is reported. Mo‐ZIS@NTO catalyst possesses wide‐spectrum light absorption properties, excellent visible light‐to‐thermal energy effect, electron mobility, charges transfer, and strong IEF and exhibits excellent solar‐to‐chemical energy conversion for efficient visible‐light‐driven photocatalytic hydrogen evolution. Notably, the engineered Mo1.4‐ZIS@NTO catalyst exhibits superior performance with H2 evolution rate of up to 14.06 mmol g−1 h− 1 and the apparent quantum efficiency of 44.1% at 420 nm. The scientific explorations provide an in‐depth understanding of microstructure, S‐scheme heterojunction, enhanced IEF, Mo‐dopant facilitation effect. Moreover, the theoretical simulations verify the critical role of Mo element in promoting the adsorption and activation of H2O molecules, modulating the H adsorption behavior on active S sites, and thus accelerating the overall catalytic efficiency. The photocatalytic hydrogen evolution mechanism via S‐scheme heterojunction with adjustable IEF regulation over Mo1.4‐ZIS@NTO is also demonstrated.

Funder

National Natural Science Foundation of China

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3