Nucleophilic Substitution Enables MXene Maximum Capacitance and Improved Stability

Author:

Xu Jiang1,Longchamps Ryan S.2,Wang Xi1,Hu Bingqing3,Li Xude3,Wang Shijian4ORCID,Li Lvzhou1,Gu Yaokai3,Cao Xiaoting1,Yuan Ningyi5,Ge Shanhai2,Wang Guoxiu4ORCID,Ding Jianning135

Affiliation:

1. Institute of Technology for Carbon Neutralization College of Electrical, Energy and Power Engineering Yangzhou University Yangzhou 225127 P. R. China

2. Department of Mechanical Engineering The Pennsylvania State University University Park PA 16802 USA

3. School of Mechanical Engineering Jiangsu University Zhenjiang 212013 P. R. China

4. Centre for Clean Energy Technology School of Mathematical and Physical Sciences Faculty of Science University of Technology Sydney Sydney NSW 2007 Australia

5. Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering Changzhou University Changzhou 213164 P. R. China

Abstract

AbstractCombining the merits of battery and supercapacitor into a single device represents a major scientific and technological challenge. From a design perspective, electrode material plays a key role in the device and the fundamental difficulty lies in incorporating a high density of active sites into a stable material with excellent charge transfer kinetics. Here, the synthesis is reported of a nearly full‐oxygen‐functionalized 2D conductive transition metal carbide (Ti3C2Oy) with ultrahigh density of Ti─O/═O redox‐active sites by nucleophilic substitution and in situ oxidation under the presence of a proper electrophilic reagent (K+). The fabricated electrode delivered exceptionally high gravimetric and volumetric capacitance (1,082 F g−1 and 3,182 F cm−3 in a potential window of 0.85 V, approximating the theoretical capacity of many transition metal oxides), fast charging/discharging in tens of seconds across a wide range of temperature (−70 to 60 °C), and excellent structural and chemical stability. These promising results provide avenues for the development of high‐energy, high‐power storage devices as well as electromagnetic shielding, and electronic and optoelectronic devices.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3