Synergy of Torsion Strained and Ligand Effect for Relay Acceleration of Industrial High‐pH Hydrogen Evolution

Author:

Jiang Rui1,Da Yumin23,Chen Ganwen23,Tian Zhangliu23,Xiao Yukun23,Cao Yanhui1,Wu Han1,Zhang Jinfeng1,Han Xiaopeng1ORCID,Deng Yida14ORCID,Hu Wenbin12

Affiliation:

1. School of Materials Science and Engineering Tianjin Key Laboratory of Composite and Functional Materials Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education) Tianjin University Tianjin 300072 China

2. Joint School of National University of Singapore and Tianjin University International Campus of Tianjin University Binhai New City Fuzhou 350207 China

3. Department of Chemistry National University of Singapore Singapore 117551 Singapore

4. State Key Laboratory of Marine Resource Utilization in South China Sea School of Materials Science and Engineering Hainan University Haikou 570228 China

Abstract

AbstractNoble metal Pt‐based catalysts have slow water dissociation kinetics at high pH conditions, making it difficult for water molecules to be electrochemically activated. Utilizing ligand effect and strain effect to tailor catalytic active sites is a common method, while the understanding of mechanism of their interaction remains obscure due to the complexity of the process. This study proposes a pulse‐induced torsional strained PtRu mesocrystals (PtRu MCs) with 20 times higher mass activity than commercial Pt/C. The combination of experimental results and theoretical calculations reveals that the ligand effect induced by Ru doping accelerates the kinetics of the water dissociation reaction, while the pulse‐induced torsion strained dominates the thermodynamic optimization of the hydrogen adsorption reaction. The structure‐activity relationship defined by the synergistic effect under the complementary advantages of the strain and doping provides guidance for the design of future basic hydrogen evolution catalysts. The catalyst can run stably at 1 A cm−2 for 500 h, showing potential for industrial application.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3