Unraveling the Influence of Shell Thickness in Organic Functionalized Cu2O Nanoparticles on C2+ Products Distribution in Electrocatalytic CO2 Reduction

Author:

Hu Jiajun1,Osella Silvio2,Albero Josep1,García Hermenegildo1ORCID

Affiliation:

1. Instituto Universitario de Tecnología Química (CSIC‐UPV) Universitat Politècnica de València (UPV) Avda. De los Naranjos s/n Valencia 46022 Spain

2. Chemical and Biological Systems Simulation Lab Centre of New Technologies University of Warsaw Warsaw 02‐097 Poland

Abstract

AbstractCu‐based electrocatalysts exhibit enormous potential for electrochemical CO2 conversion to added‐value products. However, high selectivity, specially toward C2+ products, remains a critical challenge for its implementation in commercial applications. Herein, the study reports the preparation of a series of electrocatalysts based on octadecyl amine (ODA) coated Cu2O nanoparticles (NPs). HRTEM images show ODA coatings with thickness from 1.2 to 4 nm. DFT calculations predict that at low surface coverage, ODA tends to lay on the Cu2O surface, leaving hydrophilic regions. Oppositely, at high surface coverage, the ODA molecules are densely packed, being detrimental for both mass and charge transfer. These changes in ODA molecular arrangement explain differences in product selectivity. In situ Raman spectroscopy has revealed that the optimum ODA thickness contributes to the stabilization of key intermediates in the formation of C2+ products, especially ethanol. Electrochemical impedance spectroscopy and pulse voltammetry measurements confirm that the thicker ODA shells increase charge transfer resistance, while the lowest ODA content promotes faster intermediate desorption rates. At the optimum thickness, the intermediates desorption rates are the slowest, in agreement with the maximum concentration of intermediates observed by in situ Raman spectroscopy, thereby resulting in a Faradaic efficiency to ethanol and ethylene over 73%.

Funder

Ministerio de Ciencia e Innovación

Generalitat Valenciana

Narodowe Centrum Nauki

China Sponsorship Council

Directorate-General XII, Science, Research, and Development

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3