Bifunctional Single‐Atom Iron Cocatalysts Enable an Efficient Photoelectrochemical Fuel Cell for Sensitive Biosensing

Author:

Tan Rong1,Qin Ying1,Liu Mingwang1,Wang Hengjia1,Su Rina1,Xiao Runshi12,Li Jinli1,Hu Liuyong2,Gu Wenling1,Zhu Chengzhou1ORCID

Affiliation:

1. National Key Laboratory of Green Pesticide International Joint Research Center for Intelligent Biosensing Technology and Health College of Chemistry Central China Normal University Wuhan 430079 P. R. China

2. Hubei Key Laboratory of Plasma Chemistry and Advanced Materials Hubei Engineering Technology Research Center of Optoelectronic and New Energy Materials Wuhan Institute of Technology Wuhan 430205 P. R. China

Abstract

AbstractSemiconductor‐based photoelectrochemical (PEC) fuel cells offer a feasible solution for sustainable and environmentally friendly energy production by converting solar and chemical energy into electrical energy. However, the low PEC activities of PEC fuel cells have hindered their practical application due to rapid electron‐hole recombination and slow interfacial reaction kinetics. To address this issue, a unique PEC fuel cell composed of dual photoelectrodes utilizing low‐cost biomass, ascorbic acid, as an organic fuel is reported. Significantly, the integration of bifunctional iron single‐atom catalysts (Fe SACs) and photoactive materials has effectively constructed a bridge for charge carrier transfer, boosting interfacial reaction kinetics and photoelectric conversion efficiency. Notably, the optimal dual‐photoelectrode PEC fuel cell decorated with Fe SACs exhibits superior performance, delivering a maximum power density of 82.82 µW cm−2. Taking advantage of the peroxidase‐like activity of Fe SACs, the resultant self‐powered PEC fuel cells are explored for sensitively detecting actual uric acid samples. This study provides a promising avenue to boost the energy conversion efficiency of PEC fuel cells for sensitive self‐powered biosensing.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hubei Province

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3