Controllable Electron Distribution Reconstruction of Spinel NiCo2O4 Boosting Glycerol Oxidation at Elevated Current Density

Author:

Luo Wenshu12,Tian Han1,Li Qin13,Meng Ge12,Chang Ziwei13,Chen Chang12,Shen Ruxiang12,Yu Xu12,Zhu Libo12,Kong Fantao1,Cui Xiangzhi124,Shi Jianlin12ORCID

Affiliation:

1. Shanghai Institute of Ceramics Chinese Academy of Sciences Shanghai 200050 P. R. China

2. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

3. School of Physical Science and Technology Shanghai Tech University Shanghai 201210 P. R. China

4. School of Chemistry and Materials Science Hangzhou Institute for Advanced Study University of Chinese Academy of Sciences Hangzhou 310024 P. R. China

Abstract

AbstractElectrocatalytic glycerol oxidation reaction (GOR) is an effective way to convert biomass byproduct to high value‐added chemicals, which; however, suffers from the low oxidation activity and conversion ratio of the presently available catalysts. Herein, the NiCo2O4/NF bimetallic oxide nanoarray is controllably fabricated by Ni substituting for octahedral Co3+ in Co3O4, which exhibits excellent GOR catalytic activity at elevated current densities (E300 = 1.42 V, E600 = 1.62 V) and overall Faradaic efficiency of 97.5% at 1.42 V (FEformic acid = 89.9% and FEglycolic acid = 7.62%). The high performance is attributed to the structure evolution including the rapid generation of NiIII‐OOH and CoIII‐OOH active species, the optimized intermediates adsorption, and the accelerated electron transfer owing to the Ni introduction, which are evidenced by the operando spectroscopy measurements and density functional theory calculations, respectively. The GOR/hydrogen evolution coupled two‐electrode electrolytic cell voltage is ≈299 mV lower than that of the water splitting at 50 mA cm−2. More importantly, compared to conventional water splitting, this electrolyzer is stable for over 200 h at 1.75 V, reducing energy consumption by 16.9% and obtaining high value‐added products at the anode concurrently.

Funder

National Natural Science Foundation of China

Shanghai Municipal Human Resources and Social Security Bureau

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3