VOC Bonding of Heterointerface Boosting Kinetics of Free‐Standing Na5V12O32 Cathode for Ultralong Lifespan Sodium‐Ion Batteries

Author:

Song Xuexia1,Li Xifei1,Shan Hui1,Wang Jingjing1,Li Wenbin1,Xu Kaihua2,Zhang Kun2,Sari Hirbod Maleki Kheimeh1,Lei Li1,Xiao Wei1,Qin Jian1,Xie Chong1,Sun Xueliang13ORCID

Affiliation:

1. Shaanxi International Joint Research Center of Surface Technology for Energy Storage Materials Institute of Advanced Electrochemical Energy & School of Materials Science and Engineering Xi'an University of Technology Xi'an Shaanxi 710048 P. R. China

2. GEM Co., Ltd. Shenzhen 518101 P. R. China

3. Department of Mechanical and Materials Engineering University of Western Ontario London Ontario N6A 5B8 Canada

Abstract

AbstractThe flexible free‐standing cathodes with high energy density have been challenging toward wearable sodium‐ion batteries (SIBs). Herein, Na5V12O32 nanobelts (NVO‐NBs)‐based heterostructure is fabricated with boosting the sodium‐ion kinetic characteristics to address the challenges. In the heterostructure, the controllable VOC bonds are generated at the interface originating from the chemical conversion of functional groups of the reduced graphene oxides (rGOs) with VO bonding of NVO through interfacial electronic interactions. The interfacial synergistic between the brilliant bonding properties and the inherent formation of a stress field at the heterointerface motivated by work function difference can reduce the Na+ diffusion barrier, facilitate charge transfer, hence accelerates reaction kinetics and electron/ion transport, as well as modifying the electronic structure to realize a cherished adsorption energy of Na+. Therefore, the optimized NVO‐NBs‐based heterostructure exhibits exceptional rate capability (213 mAh g−1 at 0.2 C with 100 mAh g−1 at 10 C) and ultralong cycling stability (95.4%, 3000 cycles at 5 C). This work demonstrates that the controllable heterostructure interface with abundant chemical bonds is an effective approach to exploit potential cathodes for rechargeable batteries.

Funder

National Basic Research Program of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3