MXenes and Their Derivatives for Advanced Solid‐State Energy Storage Devices

Author:

Man Quanyan1ORCID,An Yongling1,Shen Hengtao1,Wei Chuanliang2,Zhang Xinlu1,Wang Zhengran1,Xiong Shenglin2,Feng Jinkui1ORCID

Affiliation:

1. Key Laboratory for Liquid‐Solid Structural Evolution & Processing of Materials (Ministry of Education) School of Materials Science and Engineering Shandong University Jinan Shandong 250061 P. R. China

2. School of Chemistry and Chemical Engineering Shandong University Jinan Shandong 250100 P. R. China

Abstract

AbstractSolid‐state energy storage devices (SSESDs) are believed to significantly improve safety, long‐term electrochemical/thermal stability, and energy/power density as well as reduce packaging demands, showing the huge application potential in large‐scale energy storage. Nevertheless, some key issues like low ionic conductivities, poor interface contact, and dendrites growth limit the practical application of SSESDs. In recent years, MXenes for SSESDs have received reassuring advances on account of unique parameters. Nevertheless, overall reviews about the subject are seldom. In this review, current advances of MXenes and their derivatives in solid‐state Li–metal, Li‐ion, Li–I/S, Na‐ion, Zn–air, Zn–metal batteries, and supercapacitors in cathode/anode optimization, interface medication, and electrolyte fillers, etc., are comprehensively reviewed. First of all, essential principles of MXenes are shown, such as precursors, etching/delamination strategies, as well as superior properties for energy storage systems. Meanwhile, the classification and evaluation parameters of solid‐state electrolytes are summarized. Subsequently, the application, modification mechanism, and design strategy of MXenes for boosting electrochemical behaviors of SSESDs are systematically reviewed and discussed. At last, perspectives and challenges about the future construction strategies of MXenes for SSESDs are recommended. This review shall assist scientists design and build advanced SSESDs with superior energy density along with safety.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shandong Province

Shenzhen Fundamental Research Program

Taishan Scholar Foundation of Shandong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3