Intact Metal/Metal Halide van der Waals Junction Enables Reliable Memristive Switching with High Endurance

Author:

Lee Joo‐Hong12,Yang June‐Mo23,Kim So‐Yeon23,Baek Sungpyo1,Lee Sungjoo1,Lee Sung‐Joon4,Park Nam‐Gyu23,Lee Jin‐Wook12ORCID

Affiliation:

1. Department of Nano Science and Technology and Department of Nanoengineering SKKU Advanced Institute of Nanotechnology (SAINT) Sungkyunkwan University Suwon 16419 Republic of Korea

2. SKKU Institute of Energy Science & Technology (SIEST) Sungkyunkwan University Suwon 16419 Republic of Korea

3. School of Chemical Engineering Sungkyunkwan University Suwon 16419 Republic of Korea

4. Department of Materials Science and Engineering University of California, Los Angeles Los Angeles CA 90095 USA

Abstract

AbstractOrganic–inorganic or inorganic metal halide materials have emerged as a promising candidate for a resistive switching material owing to their ability to achieve low operating voltage, high on–off ratio, and multi‐level switching. However, the high switching variation, limited endurance, and poor reproducibility of the device hinder practical use of the memristors. In this study, a universal approach to address the issues using a van der Waals metal contact (vdWC) is reported. By transferring the pre‐deposited metal contact onto the active layers, an intact junction between the metal halide and contact layer is formed without unintended damage to the active layer caused by a conventional physical deposition process of the metal contacts. Compared with the thermally evaporated metal contact (EVC), the vdWC does not degrade the optoelectronic quality of the underlying layer to enable memristors with reduced switching variation, significantly enhanced endurance, and reproducibility relative to those based on the EVC. By adopting various metal halide active layers, versatile utility of the vdWC is demonstrated. Thus, this vdWC approach can be a useful platform technology for the development of high‐performance and reliable memristors for future computing.

Funder

National Research Foundation of Korea

Korea Institute of Energy Technology Evaluation and Planning

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3