Quinoxaline‐Based X‐Shaped Sensitizers as Self‐Assembled Monolayer for Tin Perovskite Solar cells

Author:

Afraj Shakil N.1,Kuan Chun‐Hsiao23,Lin Jian‐Sing23,Ni Jen‐Shyang4,Velusamy Arulmozhi1,Chen Ming‐Chou1ORCID,Diau Eric Wei‐Guang23

Affiliation:

1. Department of Chemistry and Research Center of New Generation Light Driven Photovoltaic, Modules National Central University Taoyuan 32001 Taiwan

2. Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University 1001 Ta‐Hseuh Rd. Hsinchu 300093 Taiwan

3. Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University 1001 Ta‐Hseuh Rd. Hsinchu 300093 Taiwan

4. Department of Chemical and Materials Engineering Photo‐sensitive Material Advanced Research and Technology Center (Photo‐SMART) National Kaohsiung University of Science and Technology Kaohsiung 80778 Taiwan

Abstract

AbstractFour X‐shaped quinoxaline‐based organic dyes, PQx (1), TQx, (2), PQxD (3), and TQxD (4) (D = dye sensitizers) are developed and served as p‐type self‐assemble monolayer (SAM) for tin perovskite solar cells (TPSC). Thermal, optical, and electrochemical properties of these SAMs are thoroughly investigated and characterized. Tin perovskite layers are successfully deposited on these four SAM surfaces according to a two‐step approach and the devices exhibit power conversion efficiency in the order of TQxD (8.3%) > TQx (8.0%) > PQxD (7.1%) > PQx (6.1%). With thiophene π‐extended conjugation unit in SAM structure, TQxD (4) exhibits the highest hole extraction rates, greatest hole mobilities, and slowest charge recombination to achieve great device performance of 8.3%, which is the current best result for SAM‐based TPSC ever reported. Furthermore, all devices except PQx shows great enduring stability for the performance retaining ≈90% of their original values for shelf storage over 1600 h.

Funder

Ministry of Science and Technology, Taiwan

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3