Affiliation:
1. Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 P. R. China
2. State Key Laboratory on Tunable Laser Technology Ministry of Industry and Information Technology Key Lab of Micro‐Nano Optoelectronic Information System School of Science Harbin Institute of Technology Shenzhen 518055 P. R. China
Abstract
Abstract2D ferromagnetic semiconductors are key to next‐generation spintronic devices in the post‐Moore era. The combination of ferromagnetic and optoelectronic properties offers exciting opportunities for advanced multifunctional devices in spin‐optoelectronic applications. Herein, the authors synthesize 2D van der Waals (vdW) CoxSn1‐xS with ferromagnetism and photoresponse through a bottom‐up reaction, which has a high yield compared to typical mechanical exfoliation. Ferromagnetic ordering is realized in 2D vdW semiconductor SnS by Co doping at the Sn sites. Magnetic properties are thoroughly studied at different doping concentrations, and first‐principles calculations are further performed to reveal the magnetism origin and spin interactions. In particular, a low Gilbert damping of 1.69 × 10−3 is obtained in vdW CoxSn1−xS through ferromagnetic resonance. In addition, photodetectors based on CoxSn1−xS quantum dots are demonstrated. These studies establish a promising semiconductor with both ferromagnetic ordering and photoelectric response, which provides unprecedented opportunities in spintronic‐photonic integrated applications.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献