Electron Transfer from Encapsulated Fe3C to the Outermost N‐Doped Carbon Layer for Superior ORR

Author:

Quílez‐Bermejo Javier1ORCID,Daouli Ayoub2ORCID,Dalí Sergio García13ORCID,Cui Yingdan45,Zitolo Andrea6ORCID,Castro‐Gutiérrez Jimena1ORCID,Emo Mélanie7ORCID,Izquierdo Maria T.8ORCID,Mustain William4ORCID,Badawi Michael29ORCID,Celzard Alain110ORCID,Fierro Vanessa1ORCID

Affiliation:

1. Université de Lorraine Centre National de la Recherche Scientifique (CNRS) Institut Jean Lamour (IJL) Épinal F‐88000 France

2. Université de Lorraine Centre National de la Recherche Scientifique (CNRS) Laboratoire de Physique et Chimie Théoriques (LPCT) Nancy F‐54000 France

3. Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica Universidad de Oviedo Oviedo 33004 Spain

4. Department of Chemical Engineering University of South Carolina Columbia SC 29208 USA

5. Department of Chemical and Biological Engineering The Hong Kong University of Science and Technology Kowloon Hong Kong 999077 China

6. Synchrotron SOLEIL Départementale 128 Saint Aubin F‐91190 France

7. Université de Lorraine Centre National de la Recherche Scientifique (CNRS) Institut Jean Lamour (IJL) Nancy F‐54011 France

8. Instituto de Carboquímica (ICB‐CSIC) Miguel Luesma Castán 4 Zaragoza E‐50018 Spain

9. Université de Lorraine Centre National de la Recherche Scientifique (CNRS) Laboratoire Lorrain de Chimie Moléculaire (L2CM) Metz F‐57000 France

10. Institut Universitaire de France (IUF) Paris F‐75231 France

Abstract

AbstractEncapsulating Fe3C in carbon layers has emerged as an innovative strategy for protecting Fe3C while preserving its high oxygen reduction activity. However, fundamental questions persist regarding the active sites of encapsulated Fe3C due to the restricted accessibility of oxygen molecules to the metal sites. Herein, the intrinsic electron transfer mechanisms of Fe3C nanoparticles encapsulated in N‐doped carbon materials are unveiled for oxygen reduction electrocatalysis. The precision‐structured C1N1 material is used to synthesize N‐doped carbons with encapsulated Fe3C, significantly enhancing catalytic activity (EONSET = 0.98 V) and achieving near‐100% operational stability. In anion‐exchange membrane fuel cells, an excellent peak power density of 830 mW cm−2 is reached at 60 °C. The experimental and computational results revealed that the presence of Fe3C cores dynamically triggers electron transfer to the outermost carbon layer. This phenomenon amplifies the oxygen reduction reaction performance at N sites, contributing significantly to the observed catalytic enhancement.

Funder

Ministerio de Universidades

Conseil régional du Grand Est

European Regional Development Fund

Agence Nationale de la Recherche

Publisher

Wiley

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3