Unidirectional Neuromorphic Resistive Memory Integrated with Piezoelectric Nanogenerator for Self‐Power Electronics

Author:

Khan Muhammad Umair12ORCID,Abbas Yawar23,Rezeq Moh'd23,Alazzam Anas24,Mohammad Baker12ORCID

Affiliation:

1. Department of Electrical Engineering and Computer Science Khalifa University Abu Dhabi 127788 UAE

2. System on Chip Lab Khalifa University Abu Dhabi 127788 UAE

3. Department of Physics Khalifa University Abu Dhabi 127788 UAE

4. Department of Mechanical Engineering Khalifa University Abu Dhabi 127788 UAE

Abstract

AbstractThis study presents a method to enhance data processing by integrating a unidirectional analogue artificial neuromorphic memristor device with a piezoelectric nanogenerator, taking inspiration from biological information processing. A self‐powered unidirectional neuromorphic resistive memory device is proposed, comprising an ITO/ZnO/Yb2O3/Au structure combined with a high‐sensitivity piezoelectric nanogenerator (PENG) ITO/ZnO/Al. The memristor device is operated at a voltage sweep of ±4 V with a low operating current in a range of 1.4 µA. The filament formation is studied using a conductive mode atomic force microscope. The integration enables the creation of a self‐powered artificial sensing system that converts mechanical stimuli from the PENG into electrical signals, which are subsequently processed by analogue unidirectional neuromorphic device to mimic the functionality of a neuron without requiring additional circuitry. This emulation encompasses crucial functions such as potentiation, depression, and synaptic plasticity. Furthermore, this study highlights the potential for hardware implementations of neural networks with a weight change of memristor device with nonlinearity (NL) of potentiation and depression of 1.94 and 0.89, respectively, with an accuracy of 93%. The outcomes of this research contribute to the progress of next‐generation low‐power, self‐powered unidirectional neuromorphic perception networks with correlated learning and trainable memory capabilities.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3