Affiliation:
1. Department of Electrical Engineering and Computer Science Khalifa University Abu Dhabi 127788 UAE
2. System on Chip Lab Khalifa University Abu Dhabi 127788 UAE
3. Department of Physics Khalifa University Abu Dhabi 127788 UAE
4. Department of Mechanical Engineering Khalifa University Abu Dhabi 127788 UAE
Abstract
AbstractThis study presents a method to enhance data processing by integrating a unidirectional analogue artificial neuromorphic memristor device with a piezoelectric nanogenerator, taking inspiration from biological information processing. A self‐powered unidirectional neuromorphic resistive memory device is proposed, comprising an ITO/ZnO/Yb2O3/Au structure combined with a high‐sensitivity piezoelectric nanogenerator (PENG) ITO/ZnO/Al. The memristor device is operated at a voltage sweep of ±4 V with a low operating current in a range of 1.4 µA. The filament formation is studied using a conductive mode atomic force microscope. The integration enables the creation of a self‐powered artificial sensing system that converts mechanical stimuli from the PENG into electrical signals, which are subsequently processed by analogue unidirectional neuromorphic device to mimic the functionality of a neuron without requiring additional circuitry. This emulation encompasses crucial functions such as potentiation, depression, and synaptic plasticity. Furthermore, this study highlights the potential for hardware implementations of neural networks with a weight change of memristor device with nonlinearity (NL) of potentiation and depression of 1.94 and 0.89, respectively, with an accuracy of 93%. The outcomes of this research contribute to the progress of next‐generation low‐power, self‐powered unidirectional neuromorphic perception networks with correlated learning and trainable memory capabilities.
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献