Affiliation:
1. College of Textile and Clothing Engineering National Engineering Laboratory for Modern Silk Soochow University Suzhou 215123 P. R. China
2. State Key Laboratory of New Textile Materials and Advanced Processing Technologies Wuhan Textile University Wuhan 430200 P. R. China
3. Jiangsu Key Laboratory for Carbon‐Based Functional Materials & Devices Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 P. R. China
Abstract
AbstractConvenient and green hydroelectricity generation (HG) systems are widely studied to cope with the energy crisis. Electricity can be generated through streaming potential with merely water droplets. Nevertheless, the operational requirement of persistent water supply restricts the durability and practicality of HG. Solar‐driven steam generation with continuous and sufficient water flow has become a promising integration way to enhance HG sustainability. However, most evaporation‐accelerated hydroelectricity generators are threatened by excessive wetting decay and ionic erosion damage, which significantly impair charge accumulation and operational durability. To address this issue, a carbon black/polypyrrole decorated Tencel framework (CPF) with tunable water flow is fabricated through twisting and braiding technology. The modified water flow rate, height, and content ensure rapid ion migration, appropriate wetting boundary, and sufficient brine circulation, respectively. The aqueous flow and ion strength are optimized through the evaporation‐accelerated and desalination‐integrated HG. Hence, the CPF evaporator shows an efficient, self‐operating, and sustainable output of 0.73 V, 0.6 µA, and 2.38 kg m−2 h−1 in 3.5 wt.% brine under 1 sun radiation without salt deposition. The scalable, prolonged, and adaptable outdoor operation throughout the daytime ensures the clean production of electricity and freshwater.
Funder
National Natural Science Foundation of China
Major Basic Research Project of the Natural Science Foundation of the Jiangsu Higher Education Institutions
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献