Revealing the Intrinsic Decay of Mechanoluminescence for Achieving Ultrafast‐Response Stress Sensing

Author:

Chen Changjian1,Lin Zhu1,Huang Honghui1,Pan Xin1,Zhou Tian‐Liang1,Luo Hongde23,Jin Libo23,Peng Dengfeng4,Xu Jian5,Zhuang Yixi1,Xie Rong‐Jun1ORCID

Affiliation:

1. State Key Laboratory of Physical Chemistry of Solid Surfaces Fujian Provincial Key Laboratory of Materials Genome and College of Materials Xiamen University Simingnan‐Road 422 Xiamen 361005 China

2. iRay Technology Company Limited Shanghai 201206 China

3. iRay Technology (Taicang) Limited Taicang 215434 China

4. College of Physics and Optoelectronic Engineering Shenzhen University Shenzhen 518060 China

5. International Center for Young Scientists (ICYS) National Institute for Materials Science (NIMS) Tsukuba 305‐0044 Japan

Abstract

AbstractConverting mechanical energy into photon emission provides a promising route for intelligent sensing, self‐powered lighting, and distributed energy harvesting, which is of great significance for finding a feasible solution to the current sensing technical bottleneck and energy crisis. As the basis for understanding the conversion mechanism and realizing high‐frequency mechanical energy utilization, elucidating the dynamic process of intensity variation in the mechano‐to‐photon conversion remains a great challenge. Herein, a time‐domain characterization scheme that enables to unravel the intrinsic decay of mechanoluminescence (ML) with lifetimes from milliseconds down to tens of microseconds is constructed. It is demonstrated that ML decay characterization is an important tool to reveal the dynamics of charge migration in ML materials. The ML decay in a typical self‐reproducible ML material ZnS:Mn2+ shows temperature dependence and stress fluctuation resistance, which opens up a new reliable approach for self‐powered and remote temperature sensing. Finally, benefiting from the shortest ML lifetime recorded to date, an ultrafast‐response stress sensor that enables to detect individual pulses of ultrasonic waves with ML sensing technology is developed.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3