Investigating the Role of Fe‐Pyrrolic N4 Configuration in the Oxygen Reduction Reaction via Covalently Bound Porphyrin Functionalized Carbon Nanotubes

Author:

Li Qi12,Xu Yue12,Pedersen Angus23,Wang Mengnan23,Zhang Mi1,Feng Jingyu2,Luo Hui24,Titirici Maria‐Magdalena2ORCID,Jones Christopher R.1

Affiliation:

1. Department of Chemistry Queen Mary University of London London E1 4NS UK

2. Department of Chemical Engineering Imperial College London London SW7 2AZ UK

3. Department of Materials Royal School of Mines Imperial College London London SW7 2AZ UK

4. School of Mechanical Engineering Sciences University of Surrey Stag Hill Campus Guildford GU2 7XH UK

Abstract

AbstractAtomically dispersed iron–nitrogen–carbon catalysts are promised, low‐cost, and high‐performance electrocatalysts for the Oxygen Reduction Reaction (ORR) in fuel cells. However, most Fe–N–C materials are produced via pyrolysis at a high temperature and it is difficult to characterise the precise Fe–N configurations. This can lead to confusion surrounding the best chemical and coordination environment for Fe and understanding the subsequent ORR mechanisms. In this work, Fe porphyrin is used to produce a specific Fe–N environment, therefore allowing the role and activity of this environment to be studied. Carbon nanotubes (CNTs) are covalently functionalized with iron 5,10,15,20‐triphenylporphyrin (FeTPP) motifs via aryl diazonium methodology, enabling the exact role of only the Fe‐Pyrrolic N4 configuration of FeTPP in ORR to be studied and better understood. Upon covalent functionalization, a high electrochemical active site density of 1.12 × 1015 sites cm−2, approximately six‐fold more than that of noncovalently functionalized samples with 12.7% electrochemical active site. The heightened active site density and superior electrochemical active site utilization (12.7%) lead to the more favorable 4‐electron pathway for the ORR. Furthermore, a preliminary discussion regarding the selectivity of the ORR pathway is initiated.

Funder

Engineering and Physical Sciences Research Council

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3