Ultra‐Long Room Temperature Phosphorescence with the Efficiency Over 64% Induced by 1‰ Impurity Doping

Author:

Xiao Hui1,Zheng Da‐Sheng1,Zhang Li‐Yi1,Xu Liang‐Jin12ORCID,Chen Zhong‐Ning12

Affiliation:

1. State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Chinese Academy of Sciences Fuzhou Fujian 350002 China

2. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350108 China

Abstract

AbstractUltra‐long room temperature phosphorescence (ULRTP) materials show valuable applications in encryption, biological imaging, and many other fields. Amazingly, the concomitant impurities from raw materials that are normally ignored contribute dramatically to the ULRTP. In this study, CzPMB [9‐(4‐bromo‐3‐methylphenyl)‐9H‐carbazole] with phosphorescent quantum efficiency of 64% is prepared from commercial carbazole, but the phosphorescent efficiency is drastically reduced to < 2% once trace impurity (5‐(4‐bromo‐3‐methylphenyl)‐5H‐benzo[b]carbazole) is separated. HPLC studies demonstrated the separated impurity is a byproduct derived from trace benzocarbazole in commercial carbazole. Subsequently, the ULRTP for the CzPMB synthesized from lab‐made carbazole is totally unobserved, strongly confirming the dramatic impact of impurity. A defect trapping mechanism in multicomponent system rather than heavy atom effect is proposed for highly efficient ULRTP after carefully analyzing the crystal packings and molecular energy levels. Inspired by this discovery, a series of effective ULRTP bi‐component systems with the highest phosphorescence efficiency of 64.1% are reproduced by directed host‐guest doping. This strategy paves a viable path for the design of organic materials with highly efficient ULRTP.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3