Exploring Functional Photonic Devices made from a Chiral Metal–Organic Framework Material by a Multiscale Computational Method

Author:

Zerulla Benedikt1ORCID,Li Chun2ORCID,Beutel Dominik3ORCID,Oßwald Simon4ORCID,Holzer Christof3ORCID,Bürck Jochen5ORCID,Bräse Stefan46ORCID,Wöll Christof2ORCID,Fernandez‐Corbaton Ivan1ORCID,Heinke Lars2ORCID,Rockstuhl Carsten13ORCID,Krstić Marjan3ORCID

Affiliation:

1. Institute of Nanotechnology Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany

2. Institute of Functional Interfaces Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany

3. Institute of Theoretical Solid State Physics Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany

4. Institute of Organic Chemistry Karlsruhe Institute of Technology (KIT) 76131 Karlsruhe Germany

5. Institute of Biological Interfaces (IBG‐2) Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany

6. Institute of Biological and Chemical Systems–Functional Molecular Systems Karlsruhe Institute of Technology (KIT) 76344 Eggenstein‐Leopoldshafen Germany

Abstract

AbstractElectronic circular dichroism is an important optical phenomenon offering insights into chiral molecular materials. On the other hand, metal–organic frameworks (MOFs) are a novel group of crystalline porous thin‐film materials that provide tailor‐made chemical and physical properties by carefully selecting their building units. Combining these two aspects of contemporary material research and integrating chiral molecules into MOFs promises devices with unprecedented functionality. However, considering the nearly unlimited degrees of freedom concerning the choice of materials and the geometrical details of the possibly structured films, urgently it needs to complement advanced experimental methods with equally strong modeling techniques. Most notably, these modeling techniques must cope with the challenge that the material and devices thereof cover size scales from Ångströms to mm. In response to that need, a computational workflow is outlined that seamlessly combines quantum chemical methods to capture the properties of individual molecules with optical simulations to capture the properties of functional devices made from these molecular materials. The focus is on chiral properties and applying work to UiO‐67‐BINOL MOFs, for which experimental results are available to benchmark the results of the simulations and explore the optical properties of cavities and metasurfaces made from that chiral material.

Funder

Deutsche Forschungsgemeinschaft

Carl-Zeiss-Stiftung

Volkswagen Foundation

Helmholtz Association

Karlsruhe Institute of Technology

China Scholarship Council

Ministerium für Wissenschaft, Forschung und Kunst Baden-Württemberg

Bundesministerium für Bildung und Forschung

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Reference73 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3