Semiconducting Transport in Pb10−XCux(PO4)6O Sintered from Pb2SO5 and Cu3P

Author:

Liu Li1,Meng Ziang1,Wang Xiaoning1,Chen Hongyu1,Duan Zhiyuan1,Zhou Xiaorong1,Yan Han1,Qin Peixin1,Liu Zhiqi1ORCID

Affiliation:

1. School of Materials Science and Engineering Beihang University Beijing 100191 China

Abstract

AbstractThe recent claim on the discovery of ambient‐pressure room‐temperature superconductivity in Cu‐doped lead‐apatite has attracted sensational attention. The intriguing compound has been fabricated by sintering lanarkite (Pb2SO5) and copper(І) phosphide (Cu3P). To verify this exciting claim, Pb2SO5, Cu3P, and finally the modified lead‐apatite Pb10−xCux(PO4)6O have been successfully synthesized. Detailed electrical transport and magnetic properties of these compounds are systematically analyzed. It turns out that Pb2SO5 is a highly insulating diamagnet and Cu3P is a paramagnetic metal. The obtained nominal Pb10−xCux(PO4)6O compound sintered from Pb2SO5 and Cu3P exhibits semiconductor‐like transport behavior with a large room‐temperature resistivity of ≈1.94 × 104 Ω·cm, although the major phase of the compound shows consistent X‐ray diffraction spectrum with the previously reported structure data. In addition, when a Pb10−xCux(PO4)6O pellet pressed from uniformly ground powder is located on top of a commercial Nd2Fe14B magnet at room temperature, no repulsion can be felt and no magnetic levitation is observed either. The large difference in electrical and magnetic properties between the compounds and the previously reported compounds might be induced by distinct fine crystallographic structures, diverse multi‐phase distributions, and different concentrations of impurity phases such as Cu2S, all of which deserve further study.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Reference32 articles.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3