Affiliation:
1. Department of Mechanical Engineering Stanford University Stanford California 94305 USA
2. TomKat Center for Sustainable Energy Stanford University Stanford California 94305 USA
3. Department of Chemistry Stanford University Stanford California 94305 USA
4. Department of Energy Science and Engineering Stanford University Stanford California 94305 USA
Abstract
AbstractData‐driven, machine learning (ML)‐assisted approaches have been used to study structure‐property relationships at the atomic scale, which have greatly accelerated the screening process and new material discovery. However, such approaches are not easily applicable to modulating material properties of a soft material in a laboratory with specific ingredients. Moreover, it is desirable to relate material properties directly to the experimental recipes. Herein, a data‐driven approach to tailoring mechanical properties of a soft material is demonstrated using ML‐assisted predictions of mechanical properties based on experimental synthetic recipes. Polyurethane (PU) elastomer is used as a model soft material to demonstrate the approach and experimentally varied mechanical properties of the PU elastomer by modulating the mixing ratio between components of the elastomer. Twenty‐five experimental conditions are selected based on the design of experiment and use those data points to train a linear regression model. The resulting model takes desired mechanical properties as input and returns synthetic recipes of a soft material, which is subsequently validated by experiments. Lastly, the prediction accuracies of different machine learning algorithms is compared. It is believed that the approach is widely applicable to other material systems to establish experimental conditions and material property relationships for soft materials.
Funder
Office of Naval Research
National Science Foundation
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献