Tailoring Hyaluronic Acid Hydrogels for Biomedical Applications

Author:

Luo Zhiqiang1ORCID,Wang Yu1,Li Jinbo2,Wang Jinglin1,Yu Yunru2,Zhao Yuanjin123ORCID

Affiliation:

1. Department of Rheumatology and Immunology Nanjing Drum Tower Hospital School of Biological Science and Medical Engineering Southeast University Nanjing 210096 China

2. Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health) Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325001 China

3. Southeast University Shenzhen Research Institute Shenzhen 518071 China

Abstract

AbstractHyaluronic acid (HA) is an attractive anionic polysaccharide polymer with inherent pharmacological properties and versatile chemical groups for modification. Due to their water retention ability, biocompatibility, biodegradation, cluster of differentiation‐44 targeting, and highly designable capacity, HA hydrogels have been an emerging biomaterial, showing tailoring performance in terms of chemical modifications and hydrogel forms. Various preparation technologies have been developed for the fabrication of the tailoring HA hydrogels with unique structures and functions. They have been utilized in diverse biomedical applications like drug delivery and tissue engineering scaffolds. Herein, this review comprehensively summarizes the HA derivatives with different molecule weights and functional modifications. Then the various fabrication methods to obtain tailoring hydrogels in the forms of nanogel, nanofiber, microparticle, microneedle patch, injectable hydrogel, and scaffold are reviewed as well. The emphasis is focused on the shining biomedical applications of these tailoring HA hydrogels in anti‐bacteria, anti‐inflammation, wound healing, cancer treatment, regenerative medicine, psoriasis treatment, diagnosis, etc. The potentials and prospects are subsequently given to inspire further investigation, aiming at accelerating product translation from research to clinic.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Nanjing Medical Science and Technique Development Foundation

Shenzhen Fundamental Research Program

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3