Intramolecular Hydrogen Bonding Interactions Induced Enhancement in Resistive Switching Memory Performance for Covalent Organic Framework‐Based Memristors

Author:

Yu Hongling1,Zhou Pan‐Ke1,Chen Xiong1ORCID

Affiliation:

1. State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China

Abstract

AbstractCovalent organic frameworks (COFs) are promising active mediums for high‐performance data storage devices stemming from their high crystallinity, ordered porous channels, predetermined topology, and rigid architectures, while relative studies are still limited. Here, two COFs (i.e., COF‐EtD and COF‐EtA)‐based resistive‐switching memory devices are proposed to demonstrate the impact of intramolecular hydrogen bonding interactions, both of which exhibit nonvolatile write‐once‐read‐many (WORM) memory characteristics. Comparatively, COF‐EtD with the hydroxyl motif decoration illustrated a lower SET voltage (i.e., turn‐on voltage) and a higher ON/OFF current ratio as well as exceptional high‐temperature endurance and solvent resistance. Mechanism explorations suggest that the resistance‐switching behavior of COF‐EtD may be controlled by the synergistic effect of space‐charge‐limited current and conductive filaments. This finding is the first example of simply varying the functional group of COFs to regulate the WORM resistive switching behavior, providing some inspiration for the advancement of electronic memories and positively contributing to the realization of high endurance and high‐density electric storage materials.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3