Affiliation:
1. Key Laboratory of High Performance Polymer Material and Technology of MOE Department of Polymer Science and Engineering School of Chemistry and Chemical Engineering Nanjing University Nanjing 210023 P. R. China
2. Research Institute of General Surgery Jinling Hospital Medical School of Nanjing University Nanjing 210002 P. R. China
3. College of Engineering and Applied Sciences State Key Laboratory of Analytical Chemistry for Life Science and Jiangsu Key Laboratory of Artificial Functional Materials Nanjing University Nanjing 210046 P. R. China
4. State Key Laboratory of Coordination Chemistry Nanjing University Nanjing 210023 P. R. China
Abstract
AbstractConductive hydrogels (CHs) are regarded as one of the most promising materials for bioelectronic devices on human‐machine interfaces (HMIs). However, conventional CHs cannot conform well with complex skin surfaces, such as hairy or wrinkled skin, due to pre‐formation and insufficient adhesion; they also usually lack antibacterial abilities and require tissue‐harm and time‐consuming preparation (e.g., heating or ultraviolet irradiation), which limits their practical application on HMIs. Herein, an in situ forming CH is proposed by taking advantage of the PEDOT:PSS‐promoted self‐polymerization of zwitterionic [2‐(methacryloyloxy)ethyl]dimethyl‐(3‐sulfopropyl) (SBMA). The hydrogel is formed spontaneously after injection of the precursor solution onto the desired location without any additional treatments. The as‐prepared hydrogel possesses excellent elasticity (elastic recovery >96%), desirable adhesive strength (≈6.5 kPa), biocompatibility, and intrinsically antibacterial properties. Without apparent heat release (<5 °C) during gelation, the hydrogel can form in situ on skin. Additionally, the obtained hydrogel can establish tight contact with skin, forming highly conformal interfaces on hairy skin surfaces and irregular wounds. Finally, the in situ forming hydrogels are applied as conformal epidermal electrodes to record stable and reliable surface electromyogram signals from hairy skin (with high signal‐to‐noise ratio, SNR ≈ 32 dB) and accelerate diabetic wound healing under electrical stimulation.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献