Affiliation:
1. MIIT Key Laboratory of Advanced Display Materials and Devices Institute of Optoelectronics & Nanomaterials College of Materials Science and Engineering Nanjing University of Science and Technology Nanjing 210094 P. R. China
2. Grünberg Research Centre Nanjing University of Posts and Telecommunications Nanjing 210003 P. R. China
Abstract
AbstractPerovskite shows great potential in lighting and display owing to its advantages of low cost, high efficiency, and whole visible light tunability. However, how to realize high‐efficiency white perovskite light‐emitting diodes (WPeLEDs) still faces challenges such as the stability of devices and the energy regulation between different emission centers. In recent years, some organic molecules are introduced into the perovskite system because of their role in stabilizing perovskite crystals and enhancing photoelectric properties. In this review, the strategy of perovskite‐organic combination and coupling emission are emphasized, hoping to promote the development of high‐efficiency WPeLEDs. First, the research status of perovskite‐organic coupling WLEDs (POC‐WLEDs) is summarized in detail. Then, the development direction and possibility of POC‐WLEDs are proposed by combining them with some recent reports on POC methods. Finally, an outlook on POC‐WLEDs is proposed. It is a considerable strategy to introduce organic luminescent molecules into perovskite systems as ligands or A‐site organic cations for coupling emission with perovskite. In addition, the technologies of the organic polymer matrix, interfacial exciplex, and organic crosslinking are noteworthy exploration directions. They will promote the development of POC‐WLEDs in improving the stability of perovskite electroluminescence and regulating the energy transfer efficiency between perovskite/organic‐molecule emitting centers.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献