Affiliation:
1. School of Chemical Engineering and Technology Sun Yat‐sen University Zhuhai 519082 China
2. China‐UK Low Carbon College Shanghai Jiao Tong University Shanghai 201306 China
3. Key Laboratory of Automobile Materials Ministry of Education School of Materials Science and Engineering Jilin University Changchun 130012 China
4. Institute of Material and Chemistry Ganjiang Innovation Academy Chinese Academy of Sciences Ganzhou 341000 China
Abstract
AbstractCerium, a unique rare earth element, possesses a relatively high abundance, low cost, and high redox voltage, making it an attractive candidate for redox flow batteries. However, the sluggish kinetics and corrosion nature of the Ce3+/Ce4+ electrolyte result in overpotential and degradation of carbon felt (CF) electrodes, which hinders the development of cerium‐based flow batteries. Therefore, it is essential to develop an electrode with high catalytic activity and corrosion resistance to the Ce3+/Ce4+ electrolyte. Herein, a TiC/TiO2 coated carbon felt (TiC/TiO2‐CF) electrode is proposed. Remarkably, the TiC/TiO2 coating effectively minimizes the exposure of the CF to the highly corrosive cerium electrolyte, consequently enhancing the electrode's corrosion resistance. Additionally, X‐ray photoelectron spectroscopy and high‐resolution transmission electron microscopy characterizations reveal the formation of a heterojunction between TiC and TiO2, which significantly enhances the redox reaction kinetics of the Ce3+/Ce4+ redox couple. Eventually, the practical application of TiC/TiO2‐CF catalytic electrode in a Ce–Fe flow battery is demonstrated. This study sheds light on the synthesis conditions of the TiC/TiO2‐CF electrode, elucidates its heterojunction structure, and presents a novel Ce–Fe flow battery system.
Funder
National Natural Science Foundation of China
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献