Affiliation:
1. State Key Laboratory on Integrated Optoelectronics College of Electronic Science and Engineering Jilin University 2699 Qianjin Street Changchun 130012 P. R. China
Abstract
AbstractIntroducing excess PbI2 has proven to be an effective in situ passivation strategy for enhancing efficiency of perovskite solar cells (PSCs). Nevertheless, the photoinstability and hysteresis are still tough issues owing to the photolysis nature of PbI2. Moreover, the humidity‐related degradation of perovskite films is also a difficult territory to cover in such an in situ passivation strategy. Herein, a synergistic strategy is reported via initiatively inducing vertical graded PbI2 distribution (GPD) in the whole perovskite film and capping a cis‐Ru(H2dcbpy)(dnbpy)(NCS)2 (Z907) internal encapsulation (IE) layer on the surface to ameliorate the above issues. The GPD design can enhance luminescence, prolong carrier lifetimes, ascertaining the improvement of efficiency and elimination of photoinstability in the PSCs. Besides, the introduced IE layer not only can promote the moisture and thermal resistance, but also inhibit Pb leakage and ion migration in the PSCs. Through the synergetic regulations, the resultant PSCs exhibit an impressive open circuit voltage (VOC) of 1.253 V, fill factor of 81.25%, and power conversion efficiency (PCE) of 24.28%. Moreover, the PSCs maintain 91% of its initial PCE at relative humidity of 85% after 500 h aging and 94% under continuous heating at 85 °C after 750 h aging.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献