Affiliation:
1. College of Materials Science and Chemical Engineering Harbin University of Science and Technology Harbin 150040 P. R. China
2. Departamento de Química Inorgánica Universidad de Valencia Dr. Moliner 50 46100 Burjasot Spain
3. Jiangsu Province Key Laboratory for Chemistry of Low‐Dimensional Materials School of Chemistry and Chemical Engineering Huaiyin Normal University Huai'an 223300 P. R. China
Abstract
AbstractPrecise design and construction of catalysts with satisfied performance for ambient electrolytic nitrogen reduction reaction (e‐NRR) is extremely challenging. By in situ integrating an electron‐rich polyoxometalates (POMs) into stable metal organic frameworks (MOFs), five POMs‐based MOFs formulated as [FexCoy(Pbpy)9(ox)6(H2O)6][P2W18O62]·3H2O (abbreviated as FexCoyMOF‐P2W18) are created and directly used as catalysts for e‐NRR. Their electrocatalytic performances are remarkably improved thanks to complementary advantages and promising possibilities of MOFs and POMs. In particular, NH3 yield rates of 47.04 µg h−1 mgcat.−1 and Faradaic efficiency of 31.56% by FeCoMOF‐P2W18 for e‐NRR are significantly enhanced by a factor of 4 and 3, respectively, compared to the [Fe0.5Co0.5(Pbpy)(ox)]2·(Pbpy)0.5. The cyclic voltammetry curves, density functional theory calculations and in situ Fourier‐transform infrared spectroscopy confirm that there is a directional electron channel from P2W18 to the MOFs unit to accelerate the transfer of electrons. And the introduction of bimetals Fe and Co in the P2W18‐based MOFs can reduce the energy of the *N2 to *N2H step, thereby increasing the production of NH3. More importantly, this POM in situ embedding strategy can be extended to create other e‐NRR catalysts with enhanced performances, which opens a new avenue for future NH3 production for breakthrough in the bottleneck of e‐NRR.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
54 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献