A Dual‐Mode Electrochromic Platform Integrating Zinc Anode‐Based and Rocking‐Chair Electrochromic Devices

Author:

Zhang Wu12ORCID,Li Haizeng1ORCID,Elezzabi Abdulhakem Y.2

Affiliation:

1. Optics and Thermal Radiation Research Center Institute of Frontier & Interdisciplinary Science Shandong University Qingdao Shandong 266237 China

2. Ultrafast Optics and Nanophotonics Laboratory Department of Electrical and Computer Engineering University of Alberta Edmonton Alberta T6G 2V4 Canada

Abstract

AbstractThe complementary electrochromic device, where the optical transmittance changes upon the flow of cations back and forth between anodic and cathodic electrodes, operates in a rocking‐chair fashion if it can inherently self‐discharge. Herein, the first demonstration of a dual‐mode electrochromic platform having self‐coloring and self‐bleaching characteristics is reported, which is realized by sandwiching zinc metal within a newly‐designed Prussian blue (PB)‐WO3 rocking‐chair type electrochromic device. It is demonstrated that the redox potential differences between the zinc metal and the WO3/PB electrodes endow the self‐color‐switching of these electrodes. By employing a hybrid electrolyte of Zn2+/K+, it is further shown that the colored PB‐WO3 rocking‐chair device is capable of spontaneously bleaching when the anodic and cathodic electrodes are coupled. This dual‐mode light‐control strategy enables the electrochromic devices to exhibit four distinct optical states with the highest optical contrast of 72.6% and fast switching times (<5 s for the bleaching/coloration processes). Furthermore, the built‐in voltage of the dual‐mode electrochromic devices not only promotes energy efficiency, but also augments the bistability of the devices. It is envisioned that the broad implication of the present platform is in the development of self‐powered smart windows, colorful displays, optoelectronic switches, and optical sensors.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3