Zinc‐Ion Battery Chemistries Enabled by Regulating Electrolyte Solvation Structure

Author:

Deng Wenjing1,Li Ge2ORCID,Wang Xiaolei1ORCID

Affiliation:

1. Department of Chemical and Materials Engineering University of Alberta 9211‐116 Street NW. Edmonton Alberta T6G 1H9 Canada

2. Department of Mechanical Engineering University of Alberta 9211‐116 Street NW. Edmonton Alberta T6G 1H9 Canada

Abstract

AbstractDesigning next‐generation alternative energy storage devices that feature high safety, low cost, and long operation lifespan is of the utmost importance for future wide range of applications. Aqueous zinc‐ion batteries play a vital part in promoting the development of portability, sustainability, and diversification of rechargeable battery systems. Based on the theory of electrolyte solvation chemistry, deep understanding of interaction between electrolyte components and their impact on the chemical properties has achieved a series of research progress. Analyzing the solvation shell of electrolyte or structure–performance relationship, and establishing more stable and high‐energy battery chemistries are inevitable requirements to suppress the electrolyte–electrode interphase side reaction and realize the functional use of zinc‐ion batteries. In this critical review, the attempt is to overview the current comprehension regarding the electrolyte solvation structure in zinc battery technology. Advanced methodology toward the interactions between zinc cations, solvent molecules, and anions in zinc aqueous electrolytes and the general rules for electrolyte design from the atomic level are summarized. Methods for viable solvation modification are then introduced regarding overcoming the remained challenges for transferring the laboratory results to next‐generation practical applications. Possible research direction with the aim of investigating the ultimate choice for future high‐performance electrolyte solvation construction is also outlined.

Funder

Natural Sciences and Engineering Research Council of Canada

Canada First Research Excellence Fund

Canada Research Chairs

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3