Molecular Modulation of Sequestered Copper Sites for Efficient Electroreduction of Carbon Dioxide to Methane

Author:

Zhang Kefan12,Xu Jie12,Yan Tianran12,Jia Lin12,Zhang Jie12,Shao Chaochen12,Zhang Liang12,Han Na12,Li Yanguang123ORCID

Affiliation:

1. Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou 215123 China

2. Jiangsu Key Laboratory for Advanced Negative Carbon Technologies Soochow University Suzhou 215123 China

3. Macao Institute of Materials Science and Engineering (MIMSE) MUST‐SUDA Joint Research Center for Advanced Functional Materials Macau University of Science and Technology Taipa Macau SAR 999078 China

Abstract

AbstractThe sustainable production of methane (CH4) via the electrochemical conversion of carbon dioxide (CO2) is an appealing approach to simultaneously mitigating carbon emissions and achieving energy storage in chemical bonds. Copper (Cu) is a unique material to produce hydrocarbons and oxygenates. However, selective methane generation on Cu remains a great challenge due to the preferential *CO dimerization pathway toward multi‐carbon (C2+) products at neighboring catalytic sites. Herein, a conjugated copper phthalocyanine polymer (CuPPc) is designed by a facile solid‐state method for highly selective CO2‐to‐CH4 conversion. The spatially isolated CuN4 sites in CuPPc favor the *CO protonation to generate the key *CHO intermediate, thus significantly promoting the formation of CH4. As a result, the CuPPc catalyst exhibits a high CH4 Faradaic efficiency of 55% and a partial current density of 18 mA cm−2 at −1.25 V versus the reversible hydrogen electrode. It also stably operates for 12 h. This study may offer a new solution to regulating the chemical environment of the active sites for the development of highly efficient copper‐based catalysts for electrochemical CO2 reduction.

Funder

National Natural Science Foundation of China

Collaborative Innovation Center of Suzhou Nano Science and Technology

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3