Hydrophilic‐Zincophobic Separator Enabling by Crystal Structure Regulation toward Stabilized Zn Metal Anode

Author:

Lv Shujun1,Su Mingyu12,Li Zhuo1,Mao Yiyang1,Yin Jinling1,cao Dianxue1,Wang Guiling1,Yi Jin2,Ning Fanghua2,Zhu Kai1ORCID

Affiliation:

1. Key Laboratory of Superlight Materials and Surface Technology (Ministry of Education) College of Material Science and Chemical Engineering Harbin Engineering University Harbin 150001 China

2. Institute for Sustainable Energy/College of Sciences Shanghai University Shanghai 200444 China

Abstract

AbstractAqueous zinc‐ion batteries (ZIBs) hold significant promise for large‐scale energy storage. While considerable strides have been made in modifying separators, the challenge of developing dendrite‐free, corrosion‐resistant, and cost‐effective separators for achieving extended cycling performance of Zn anodes persists. In light of this, a TiO2 coating separator to mitigate interfacial corrosion and passivation reactions, thereby facilitating high‐performance ZIBs is designed. This study delves into the influence of the loading amount and crystal phase of the TiO2 coating layers on separator modification. Zn symmetric cells employing the anatase TiO2‐modified glass fiber (A‐TiO2@GF) separator demonstrate superior Zn2+ ion transport kinetics in a mild ZnSO4 electrolyte, ensuring sustained long‐term stability and uniform Zn deposition. Furthermore, the reduced hydrogen evolution reaction (HER) activity of A‐TiO2 coatings curbs H+ ion migration, minimizing interfacial corrosion and HER. Consequently, the assembled Zn||CaV8O20 zinc‐ion full cells demonstrate outstanding long‐term durability and impressive specific capacity, boasting a discharge capacity of 142 mAh g−1 after 1000 cycles. This work introduces a straightforward interface engineering strategy for creating efficient separators in zinc‐ion batteries, promoting uniform Zn deposition.

Publisher

Wiley

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3