Unlocking the Catalytic Potential of Platinum Single Atoms for Industry‐Level Current Density Chlorine Tolerance Hydrogen Generation

Author:

Sun Huachuan12,Chen Hsiao‐Chien34,Humayun Muhammad5,Qiu Yang6,Ju Jun1,Zhang Yumin2,Bououdina Mohamed5,Xue Xinying7,Liu Qingju2,Pang Yuanjie8,Wang Chundong15ORCID

Affiliation:

1. School of Integrated Circuits Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 P. R. China

2. National Center for International Research on Photoelectric and Energy Materials Yunnan Key Laboratory for Micro/Nano Materials & Technology School of Materials and Energy Yunnan University Kunming 650091 P. R. China

3. Center for Reliability Science and Technologies Chang Gung University Taoyuan 33302 Taiwan

4. Center for Sustainability and Energy Tecnhologies Chang Gung University Taoyuan 33302 Taiwan

5. Energy Water and Environment Lab College of Humanities and Sciences Prince Sultan University Riyadh 11586 Saudi Arabia

6. Pico Center SUSTech Core Research Facilities Southern University of Science and Technology Shenzhen 518055 P. R. China

7. Department of Physics College of Science Shihezi University Xinjiang 832003 P. R. China

8. School of Optical and Electronic Information Wuhan National Laboratory for Optoelectronics Huazhong University of Science and Technology Wuhan 430074 P. R. China

Abstract

AbstractImmobilizing platinum (Pt) single atoms on appropriate supports with optimized coordination environments and electronic structures is a promising strategy to address the problem of chlorine corrosion during seawater electrolysis. Herein, Pt single atoms on nickel‐vanadium layered double hydroxides (Pt‐SA/NiV‐LDH) matrix are fabricated for chlorine tolerance hydrogen generation. Due to the strong synergetic electronic interaction between atomically dispersed Pt and the ultrathin NiV LDH matrix, the adsorption/dissociation feature of *H2O, *OH, and *H are optimized as evidenced theoretically. The as‐fabricated Pt‐SA/NiV‐LDH electrode exhibits an exceptional mass activity (i.e., 30.98 times higher) compared to the commercial Pt/C, along with an ultra‐high turnover frequency (TOF) value of 9.90 s−1 in alkaline media. Impressively, only 207 mV overpotential is required to yield a current density of 2000 mA cm‒2 in an electrolyte solution containing 1 m KOH and 2 M NaCl, indicating its robust resistance to chlorine. Moreover, this kind of material demonstrates remarkably low overpotentials of 130 and 215 mV to attain the industrial‐scale current densities of 1000 and 2000 mA cm−2 in alkaline seawater, accompanied by exceptional stability for 500 h working at 500 mA cm−2. This work provides an insightful reference for the production of sustainable green hydrogen through seawater electrolysis.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3