Self‐Assembled Robust Interfacial Layer for Dendrite‐Free and Flexible Zinc‐Based Energy Storage

Author:

Zheng Zhiyuan1,Ren Danyang2,Li Yang1,Kang Fulian1,Li Xu1,Peng Xinya1,Dong Liubing1ORCID

Affiliation:

1. College of Chemistry and Materials Science Jinan University Guangzhou 511443 China

2. Research Institute of Intelligent Sensing Zhejiang Lab Hangzhou 311100 China

Abstract

AbstractAqueous zinc‐based energy storage systems (Zn‐ESSs) with intrinsic safety and good electrochemical performance are promising power suppliers for flexible electronics, whereas unstable zinc anodes especially in flexible Zn‐ESSs pose a challenge. Herein, a self‐assembled robust interfacial layer to achieve stable zinc anodes in non‐flexible and flexible Zn‐ESSs is reported. Specifically, zinc anodes and their slowly‐released Zn2+ simultaneously interact with tannic acid molecules in ethanol–water solutions, triggering the self‐assembly of a tannic acid/Zn2+ complex interfacial layer (CIL) that firmly anchors on the zinc anodes. The CIL containing abundant carboxyl and phenolic hydroxyl functional groups provides rich zincophilic sites to homogenize Zn2+ flux and accelerate Zn2+ desolvation‐deposition, and traps H+/H2O species to prevent them from corroding zinc anodes, thereby stabilizing the zinc deposition interface. Consequently, the CIL@Zn anodes present superior stability with an operation lifetime exceeding 700 h even at 5 mA cm−2 (28 times longer than that of bare zinc anodes) and ultrahigh cumulative plated capacity of ≈1.8 Ah cm−2. The firm anchoring of the CIL enables the CIL@Zn anodes to endure diverse deformations, thus realizing highly flexible CIL@Zn anode‐based Zn‐ESSs. This work provides thinking in designing stable and flexible zinc anodes, promoting the development of flexible zinc‐based energy storage.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Basic and Applied Basic Research Foundation of Guangdong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3