Affiliation:
1. National Engineering Research Center of Ophthalmology and Optometry Eye Hospital Wenzhou Medical University Wenzhou 325027 China
2. Wenzhou Institute University of Chinese Academy of Sciences Wenzhou Zhejiang 325000 China
3. National Clinical Research Center for Ocular Diseases Eye Hospital Wenzhou Medical University Wenzhou 325027 China
4. Oujiang Laboratory Zhejiang Lab for Regenerative Medicine, Vision and Brain Health Wenzhou 325000 China
5. Department of Bioengineering University of California Los Angeles Los Angeles CA 90095 USA
Abstract
AbstractOcular injuries and their complications represent the most common causes of visual impairment. For ocular surgery, there is an unmet need for highly transparent bioadhesives with superior adhesion, biocompatibility, and regenerative properties. Herein, a novel high‐transparent bioadhesive hydrogel composed of gelatin methacryloyl (GelMA) and dopamine methacrylamide (DMA) is developed by in situ oxidative free‐radical polymerization. This bioadhesive hydrogel overcomes the fundamental weakness of mussel‐inspired adhesive copolymers in clinical practice by combining multiple favorable properties, including high light transmission, mechanical strength, adhesive strength, and biocompatibility. DMA significantly enhances corneal epithelial cells adhesion, proliferation, and migration on GelMA, and prevents the accumulation of reactive oxygen species (ROS) in corneal epithelial cells. In rabbit models of corneal and conjunctiva transplantation, the bioadhesive is able to decrease the inflammatory response and fibrosis formation induced by suture surgical trauma. In addition, the rabbit corneal stromal defect model reveals that the Gel/DMA bioadhesive could effectively seal corneal defects, accelerates corneal re‐epithelialization, and promotes wound healing. Thus, given the advantages of high bioactivity and simple preparation, the Gel/DMA bioadhesive represents a promising strategy for suture‐free ocular repair.
Funder
National Natural Science Foundation of China
Wenzhou Medical University
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献