Metal Hydrogel‐Based Integrated Wearable Biofuel Cell for Self‐Powered Epidermal Sweat Biomarker Monitoring

Author:

Chen Yao1,Wan Xinhao1,Li Guanglei2,Ye Jianqi1,Gao Jie2,Wen Dan1ORCID

Affiliation:

1. State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University Xi'an 710072 P. R. China

2. School of Life Sciences Northwestern Polytechnical University Xi'an 710072 P. R. China

Abstract

AbstractWearable sensors for continuous monitoring of biomarkers in body fluids have gained significant attention for their potential in disease diagnostics and health management, but lack sustainable power supply and advanced sensing strategies. Herein, sweat wearable biofuel cells (w‐BFCs) based on metal hydrogels are demonstrated with high output and outstanding stability, which harvest energy directly from human sweat and simultaneously enable self‐powered sensing of epidermal biomarkers. Experimental and computational results elucidate that the highly porous and flexible metal hydrogels exhibit superior electrocatalytic capabilities for oxidizing ascorbic acid (AA), a sweat metabolite at the anode, and reducing O2 at the cathode. Consequently, the assembled AA/O2 BFC delivers a high and stable power output, with a maximum output power density of 35 µW cm−2 at an ultralow AA concentration and long‐term stability over 30 days, and a self‐powered, sensitive sensing for AA detection. When applied to the skin of the volunteers, this integrated w‐BFC powers the biosensor using human sweat AA as fuel and allowing real‐time monitoring of AA sensing signal via smartphone. This work not only advances energy harvesting for wearable sensors but also paves new avenues for real‐time, online monitoring of epidermal sweat biomarkers.

Funder

National Natural Science Foundation of China

State Key Laboratory of Solidification Processing

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3