In Situ Thermolysis of a Ni Salt on Amorphous Carbon and Graphene Oxide Substrates

Author:

Tamadoni Saray Mahmound1,Yurkiv Vitaliy2,Shahbazian‐Yassar Reza1ORCID

Affiliation:

1. Department of Mechanical and Industrial Engineering University of Illinois Chicago Chicago IL 60607 USA

2. Department of Aerospace and Mechanical Engineering University of Arizona Tucson AZ 85721 USA

Abstract

AbstractUnderstanding the thermal decomposition of metal salt precursors on carbon structures is essential for the controlled synthesis of metal‐decorated carbon nanomaterials. Here, the thermolysis of a Ni precursor salt, NiCl2·6H2O, on amorphous carbon (a‐C) and graphene oxide (GO) substrates is explored using in situ transmission electron microscopy. Thermal decomposition of NiCl2·6H2O on GO occurs at higher temperatures and slower kinetics than on a‐C substrate. This is correlated to a higher activation barrier for Cl2 removal calculated by the density functional theory, strong Ni‐GO interaction, high‐density oxygen functional groups, defects, and weak van der Waals using GO substrate. The thermolysis of NiCl2·6H2O proceeds via multistep decomposition stages into the formation of Ni nanoparticles with significant differences in their size and distribution depending on the substrate. Using GO substrates leads to nanoparticles with 500% smaller average sizes and higher thermal stability than a‐C substrate. Ni nanoparticles showcase the fcc crystal structure, and no size effect on the stability of the crystal structure is observed. These findings demonstrate the significant role of carbon substrate on nanoparticle formation and growth during the thermolysis of carbon–metal heterostructures. This opens new venues to engineer stable, supported catalysts and new carbon‐based sensors and filtering devices.

Funder

National Science Foundation

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3