A MOFs‐Derived Hydroxyl‐Functionalized Hybrid Nanoporous Carbon Incorporated Laser‐Scribed Graphene‐Based Multimodal Skin Patch for Perspiration Analysis and Electrocardiogram Monitoring

Author:

Asaduzzaman Md12ORCID,Faruk Omar12ORCID,Samad Ahmad Abdus12,Kim HongSeok12,Reza Md Selim12,Lee YeYeong12,Park Jae Yeong12ORCID

Affiliation:

1. Advanced Sensor and Energy Research Laboratory Department of Electronic Engineering Kwangwoon University 447‐1 Wolgye‐dong Nowon‐gu Seoul 01897 Republic of Korea

2. Human IoT Focused Research Center Kwangwoon University 447‐1 Wolgye‐dong Nowon‐gu Seoul 01897 Republic of Korea

Abstract

AbstractAlthough metal‐organic framework (MOF)‐derived nanoporous C (NPC) materials offer several advantages for electrochemical sensor applications, surface functionalization and porosity tuning can affect sensor performance. This study presents the development of a skin patch for perspiration and electrocardiogram (ECG) monitoring, leveraging the unique properties of MOF‐on‐MOF‐derived surface‐functionalized hybrid nanoporous C (f‐HNPC) incorporated into laser‐scribed graphene (LSG). Hydroxyl (OH) group‐functionalized NPC, achieved through KOH activation, facilitates electron transport at the electrode–electrolyte interface. This enhances the electrochemical activity, thereby improving sensor sensitivity and expanding the detection range. The integration of f‐HNPC provides enhanced surface area and electrochemical properties, enabling sensitive and selective detection of sweat biomarkers, including glucose (103 µA mM−1 cm−2) and uric acid (184 µA mM−1 cm−2) along with an ultra‐wide glucose detection range (up to 41.5 mM). Moreover, the incorporation of LSG ensures excellent mechanical flexibility, facilitating conformal contact with the skin for reliable signal acquisition. The proposed skin patch demonstrates promising performance in real‐time perspiration analysis and ECG monitoring with a signal‐to‐noise ratio of 23.63 dB, along with high stability and long‐term durability. The synergistic combination of f‐HNPC and LSG shows great potential for developing advanced wearable biosensing platforms for personalized healthcare applications.

Funder

Ministry of Trade, Industry and Energy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3