Gel Polymer Electrolyte toward Large‐Scale Application of Aqueous Zinc Batteries

Author:

Qi Ruiyu12,Tang Wenhao2,Shi Yiliang1,Teng Kewei1,Deng Yirui2,Zhang Lei3,Zhang Junqing3,Liu Ruiping12ORCID

Affiliation:

1. Department of Materials Science and Engineering China University of Mining & Technology Beijing Beijing 100083 P. R. China

2. School of Chemical & Environmental Engineering China University of Mining & Technology Beijing Beijing 100083 P. R. China

3. Department of Mechanical Engineering University of Alaska Fairbanks PO Box 755905 Fairbanks AK 99775‐5905 USA

Abstract

AbstractAqueous zinc batteries are promising candidates for energy storage and conversion devices in the “post‐lithium” era due to their high energy density, high safety, and low cost. The electrolyte plays an important role in zinc batteries by conducting and separating the positive and negative electrodes. However, the issues of zinc dendrites growth, corrosion, by‐product formation, hydrogen evolution and leakage, and evaporation of the aqueous electrolytes affect the commercialization of the batteries. Moreover, the widely used aqueous electrolytes result in large battery sizes, which are not conducive to the emerging smart devices. The intrinsic properties of gel polymer electrolytes (GPEs) can solve the above problems. In order to promote the wider application of GPEs‐based zinc batteries, in this review, the working principle and the current problems of zinc batteries are first introduced, andthe merits of GPEs compared to aqueous electrolytes are then summarized. Subsequently, a series of challenges and corresponding strategies faced by GPE is discussed, and an outlook for its future development is finally proposed.

Funder

National Natural Science Foundation of China

American Chemical Society Petroleum Research Fund

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3