3D Printed Flexible Zinc Ion Micro‐Batteries with High Areal Capacity Toward Practical Application

Author:

Lu Yongyi1,Wang Zhihao1,Li Min1,Li Zongyang1,Hu Xinyu1,Xu Qunjie1,Wang Yuehui2,Liu Haimei1ORCID,Wang Yonggang3ORCID

Affiliation:

1. Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power College of Environmental and Chemical Engineering Shanghai University of Electric Power Shanghai 200090 China

2. Department of Materials and Food Zhongshan Institute University of Electronic Science and Technology of China Zhongshan 528402 China

3. Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials Institute of New Energy Fudan University Shanghai 200433 China

Abstract

AbstractPrinted zinc ion micro‐batteries (PZIMBs) possess characteristics such as miniaturization, customizability, and affordability, making them highly promising for the field of flexible electronic devices. Nevertheless, the current development of PZIMBs is seriously hindered by their limited areal capacity. In this study, PZIMBs with a high areal capacity are conducted based on 3D printing technology by optimizing the material properties, electrode ink formulation, and printing parameters. The cathode material, polyvinylpyrrolidone‐induced ammonium vanadate (P‐NVO) nanobelt, exhibits a high capacity of 457.3 mAh g−1 at 0.1 mA g−1, along with good cycling performance and rate capability. The double‐network hydrogel electrolyte, composed of crosslinked polyacrylamide‐polyvinylpyrrolidone (PAM‐PVP hydrogel electrolyte), demonstrates excellent ionic conductivity (107.22 mS cm−1), high stretchability (970%), and viscosity. The constructed PZIMBs exhibit a high areal capacity of 4.02 mAh cm−2 at 0.5 mA cm−2, along with good mechanical flexibility. Moreover, through the integration of PZIMBs with pressure sensors, an interactive system is developed that resembles electronic skin, and this integration enables practical applications of wearable devices. This study presents a novel approach for fabricating PZIMBs with high areal capacity, thereby contributing to and propelling the advancement of flexible energy storage.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Shanghai Municipality

Science and Technology Commission of Shanghai Municipality

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3