Fullerene Lattice‐Confined Ru Nanoparticles and Single Atoms Synergistically Boost Electrocatalytic Hydrogen Evolution Reaction

Author:

Luo Tianmi1,Huang Jianfeng1ORCID,Hu Yuzhu1,Yuan Chengke1,Chen Junsheng1,Cao Liyun1ORCID,Kajiyoshi Koji2,Liu Yijun3,Zhao Yong3,Li Zhenjiang4,Feng Yongqiang1ORCID

Affiliation:

1. School of Materials Science and Engineering, International S&T Cooperation Foundation of Shaanxi Province Shaanxi University of Science and Technology Xi'an 710021 P. R. China

2. Research Laboratory of Hydrothermal Chemistry Kohi University Kochi 780–8520 Japan

3. Guangdong Mona Lisa Group Co. Ltd Foshan Guangdong 528211 P. R. China

4. College of Materials Science and Engineering Qingdao University of Science and Technology Qingdao Shandong 266042 P. R. China

Abstract

AbstractThe design and construction of electrocatalysts with high efficiency, low cost and large current output suitable for industrial hydrogen production is the current development trend for water electrolysis. Herein, a lattice‐confined in situ reduction effect of the 3D crystalline fullerene network (CFN) is developed to trap Ru nanoparticle (NP) and single atom (SA) via a solvothermal‐pyrolysis process. The optimized product (RuNP‐RuSA@CFN‐800) exhibits outstanding electrocatalytic performance for alkaline hydrogen evolution reactions. To deliver a current density of 10 mA cm−2, the RuNP‐RuSA@CFN‐800 merely required an overpotential of 33 mV, along with a robust electrocatalytic durability for 1400 h. Even at large current densities of 500 and 1000 mA cm−2, the overpotentials are only 154 and 251 mV, respectively. Density function theorey calculation results indicated that the electronic synergetic effect between Ru NP and SA enable to regulate the charge distribution of RuNP‐RuSA@CFN‐800 and reduce the Gibbs free energy of intermediate species for water dissociation process, thereby accelerating the hydrogen evolution process. Moreover, the robust CFN matrix render this strategy patulous to other transition metals, e.g., Cu, Ni, and Co. The present study provides a new clue for the construction of novel electrocatalyst in the field of energy storage and conversion.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3