Strain‐Invariant, Highly Water Stable All‐Organic Soft Conductors Based on Ultralight Multi‐Layered Foam‐Like Framework Structures

Author:

Barg Igor1ORCID,Kohlmann Niklas2ORCID,Rasch Florian3ORCID,Strunskus Thomas14ORCID,Adelung Rainer34ORCID,Kienle Lorenz24ORCID,Faupel Franz14ORCID,Schröder Stefan14ORCID,Schütt Fabian34ORCID

Affiliation:

1. Chair for Multicomponent Materials Institute for Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany

2. Chair for Synthesis and Real Structure Institute for Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany

3. Chair for Functional Nanomaterials Institute for Materials Science Kiel University Kaiserstraße 2 24143 Kiel Germany

4. Kiel Nano, Surface and Interface Science KiNSIS Kiel University Christian‐Albrechts‐Platz 4 24118 Kiel Germany

Abstract

AbstractSoft and flexible conductors are essential for the development of soft robots, wearable electronics, electronic tissue, and implants. However, conventional soft conductors are inherently characterized by a large change in conductance upon mechanical deformation or under alternating environmental conditions, e.g., humidity, drastically limiting their application potential. This work demonstrates a novel concept for the development of strain‐invariant, highly elastic and highly water stable all‐organic soft conductors, overcoming the limitations of previous strain‐invariant soft conductors. For the first time, thin film deposition technologies are combined in a three‐dimensional fashion, resulting in micro‐ and nano‐engineered, multi‐layered (<50 nm), ultra‐lightweight (< 15 mg cm3) foam‐like framework structures based on Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) and Polytetrafluoroethylene (PTFE), characterized by a highly strain‐invariant conductivity (≈184 S/m) between 80% compressive and 25% tensile strain. Both the initial electrical and mechanical properties are retained during long‐term cycling, even after 2000 cycles at 50% compression. Furthermore, the PTFE thin film renders the framework structure highly hydrophobic, resulting in stable electrical properties, even when immersed in water for a month. Such innovative multi‐scaled and multi‐layered functional materials are of interest for a broad range of applications in soft electronics, energy storage and conversion, sensing, water and air purification, as well as biomedicine.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3