Giant Spin‐Charge Conversion in Ultrathin Films of the MnPtSb Half‐Heusler Compound

Author:

Longo E.12ORCID,Markou A.3,Felser C.3,Belli M.1,Serafini A.4,Targa P.4,Codegoni D.4,Fanciulli M.5,Mantovan R.1ORCID

Affiliation:

1. CNR‐IMM, Unit of Agrate Brianza (MB) Via C. Olivetti 2 Agrate Brianza 20864 Italy

2. Institut de Ciència de Materials de Barcelona, ICMAB‐CSIC Campus UAB Bellaterra Catalonia 08193 Spain

3. Max Planck Institute for Chemical Physics of Solids Nöthnitzer Straße 40 01187 Dresden Germany

4. STMicroelectronics Via C. Olivetti 2 Agrate Brianza 20864 Italy

5. Dipartimento di Scienze dei Materiali Università degli Studi di Milano‐Bicocca Via R. Cozzi 55 Milano 20126 Italy

Abstract

AbstractHalf‐metallic half‐Heusler compounds with strong spin‐orbit‐coupling and broken inversion symmetry in their crystal structure are promising materials for generating and absorbing spin‐currents, thus enabling the electric manipulation of magnetization in energy‐efficient spintronic devices. In this work, the spin‐to‐charge conversion in the sputtered half‐Heusler MnPtSb within thickness (t) range from 1 to 6 nm is reported. A combination of X‐ray and transmission electron microscopy measurements evidence the epitaxial nature of these ultrathin non‐centrosymmetric layers, with a clear (111)‐orientation on top of (0001) single‐crystal sapphire. By broadband ferromagnetic resonance (FMR), a four orders of magnitude tunable spin accumulation in the MnPtSb‐based heterostructures, within t = 1–6 nm range, is observed. By using spin pumping FMR, a remarkable t‐dependent spin‐charge conversion in the MnPtSb layers is measured, which clearly demonstrates the interfacial origin of the conversion. When interpreted within the inverse Edelstein effect (IEE), the spin‐charge conversion efficiency extracted at room temperature for the thinnest MnPtSb layer reaches λIEE≈3 nm, representing an extremely high conversion. The still never explored ultrathin regime of the MnPtSb films studied in this work and the discovery of their outstanding functionality are two ingredients that demonstrate the potentiality of such materials for future applications in spintronics.

Funder

Horizon 2020 Framework Programme

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3