Electrochemically Induced Crystalline‐to‐Amorphous Transition of Dinuclear Polyoxovanadate for High‐Rate Lithium‐Ion Batteries

Author:

Li Xiaolei1,Lin Zifeng1,Jin Na1,Sun Lei1,Yang Xiaojiao1,Liu Ying1ORCID

Affiliation:

1. College of Materials Science and Engineering Sichuan University Chengdu 610065 P. R. China

Abstract

AbstractPolyoxometalates are intriguing high‐capacity anode materials for alkali‐metal‐ion storage due to their multi‐electron redox capabilities and flexible structure. However, their poor electrical conductivity and high working voltage severely restrict their practical application. Herein, the dinuclear polyoxovanadate Sr2V2O7·H2O with unusually high electrical conductivity is reported as a promising anode material for lithium‐ion batteries. During the initial lithiation process, the Sr2V2O7·H2O anode experiences an electrochemically induced crystalline‐to‐amorphous transition. The resulting amorphous structure provides high redox activity and fast reaction kinetics via reversible V4.9+/V2.8+ redox couple through the intercalation mechanism. Furthermore, when coupled with the LiFePO4 cathode, the strong VO bonds of the amorphous anode provide excellent structural stability, with the full‐cell capable of performing >12 000 cycles with a capacity retention of 72%. Another advantage of Sr2xV2O7‐δ·yH2O (0.5 ≤ x ≤ 1.0) is its composition adjustability, which enables delicately regulating the Sr vacancy content without destroying the structure. The defect Sr2xV2O7‐δ·yH2O (x = 0.5) electrodes show significantly improved specific capacity and rate capability without sacrificing other key properties, delivering a high specific capacity of 479 mAh g‐1 at 0.1 mA cm‐2 and 41.9% of its capacity in 2 min. Overall, the preliminary study points the way forward for the facile preparation of high‐quality polyoxometalates for advanced energy storage applications and beyond.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3