Hexagonal Defect‐Rich MnOx/RuO2 with Abundant Heterointerface to Modulate Electronic Structure for Acidic Oxygen Evolution Reaction

Author:

Wu Zexing1,Wang Yonglong1,Liu Dongzheng1,Zhou Bowen1,Yang Pengfei2,Liu Runze1,Xiao Weiping3,Ma Tianyi4,Wang Jinsong5,Wang Lei1ORCID

Affiliation:

1. Key Laboratory of Eco‐Chemical Engineering Ministry of Education International Science and Technology Cooperation Base of Eco‐Chemical Engineering and Green Manufacturing College of Chemistry and Molecular Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China

2. College of Chemical Engineering Qingdao University of Science and Technology Qingdao 266042 P. R. China

3. College of Science Nanjing Forestry University Nanjing 210037 P. R. China

4. School of Science STEM College RMIT University Melbourne 3122 Australia

5. Faculty of Materials Science and Engineering Kunming University of Science and Technology Kunming 650093 P. R. China

Abstract

AbstractDeveloping green hydrogen energy to power future societies has driven the progress of proton‐exchange membrane water electrolyzers (PEMWE). However, due to the complex anode oxygen evolution reaction (OER) electron transfer process and the strong acidic environment, the most effective catalysts are still Ir‐based nanomaterials. Therefore, exploiting low cost acidic OER catalysts to meet the needs of PEMWE remains a challenging and rewarding task. Herein, hexagonal‐shaped and defect‐rich MnOx/RuO2 heterojunction nanosheets (H/d‐MnOx/RuO2) is designed. The oxygen vacancies and heterogeneous structure enable the H/d‐MnOx/RuO2 catalyst to reach 10 mA cm−2 with only overpotential 178 mV in 0.5 m H2SO4. Density functional theory shows that the oxygen vacancies and heterogeneous interface facilitates the reduction of the adsorption energy of *OOH and the reduction of the energy level of Ru‐Oads, thus suppressing the involvement of lattice oxygen and enhancing the durability. This study provides an effective way to design efficient catalysts for hydrogen production in PEMWE.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Postdoctoral Innovation Project of Shandong Province

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3