Anti‐Corrosive SnS2/SnO2 Heterostructured Support for Pt Nanoparticles Enables Remarkable Oxygen Reduction Catalysis via Interfacial Enhancement

Author:

Lin Zijie1,Liu Junyi2,Li Shenzhou1,Liang Jiashun1,Liu Xuan1,Xie Linfeng1,Lu Gang2,Han Jiantao1,Huang Yunhui1,Li Qing1ORCID

Affiliation:

1. State Key Laboratory of Material Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan Hubei 430074 China

2. Department of Physics and Astronomy California State University Northridge Northridge CA 91330 USA

Abstract

AbstractThe stability of Pt‐based catalysts for oxygen reduction reaction (ORR) in hydrogen fuel cells is seriously handicapped by the corrosion of their carbon supports at high potentials and acidic environments. Herein, a novel SnS2/SnO2 hetero‐structured support is reported for Pt nanoparticles (NPs) as the ORR catalyst, where Pt NPs are mainly deposited at the interfaces of SnS2 and SnO2 moieties. The Pt‐support interactions, which can be tuned by the concentration of the heterointerfaces, can accelerate the electronic transfer and enrich the electron density of Pt with a favorable shift of the d‐band center. In electrochemical measurements, the ORR mass activity (MA) of the optimal Pt‐SnS2/SnO2 catalyst at 0.9 V versus RHE (0.40 A mgPt−1) is four times higher than that of Pt/C. As for the stability, the electrochemical active surface area and MA of Pt‐SnS2/SnO2 are only decreased by 18.2% and 23.7% after 50 000 potential cycles at a high potential region (1.0–1.6 V), representing the best ORR stability among the reported Pt‐based catalysts. Density functional theory calculations indicate that the binding energy and migration barrier of Pt atom/cluster on the SnS2/SnO2 heterojunction are much higher relative to other supports, accounting for the outstanding stability of the catalyst.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3