Highly Crystalline Rubrene Light‐Emitting Diodes with Epitaxial Growth

Author:

Wang Shu‐Jen1ORCID,Kirch Anton1,Sawatzki Michael1,Achenbach Tim1,Kleemann Hans1,Reineke Sebastian1,Leo Karl12

Affiliation:

1. Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) Technische Universität Dresden 01069 Dresden Germany

2. Center for Advancing Electronics Dresden (cfaed) Technische Universität Dresden Helmholtz Str. 18 01069 Dresden Germany

Abstract

AbstractConventional organic optoelectronic devices suffer from low carrier mobility limited by the static and dynamic disorder. Organic crystals with long‐range order can circumvent the effects of disorder and significantly improve the charge transport. While highly ordered organic crystals offer the desirable electronic coupling strength and charge transport, their integration into large‐area optoelectronic devices remains a challenge. Here, monolithic integrated triclinic crystal rubrene light‐emitting diodes (LEDs) are presented using epitaxial growth with functional additives being engineered into the films. Superior charge transport, excellent operational and long‐term stability in these light‐emitting devices are demonstrated. By comparing two rubrene‐based LEDs, one made from amorphous and one from crystalline rubrene layers, their exciton dynamics are estimated using comprehensive transient electroluminescence simulation. The crystalline LEDs show high triplet‐triplet annihilation (TTA) rate constant similar to TTA rate constant of triclinic single crystals determined by optical spectroscopy. At the same time, the crystalline phase enhances drastically the singlet‐fission and bimolecular annihilation rates, which reduces the overall performance of the LED compared to its amorphous counterpart. Finally, an outlook on the potential applications of rubrene and/or its derivatives crystalline films are provided for enhancing the performance of organic and hybrid optoelectronic devices.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3