Affiliation:
1. College of Textile and Clothing Engineering Soochow University Suzhou Jiangsu 215123 P. R. China
2. College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
3. Jiangsu Naton Science & Technology Co., Ltd Suzhou 215123 P. R. China
Abstract
AbstractTextile‐based generators that can convert low‐grade energy from the human body or environment into sustainable electricity have generated immense scientific interest in self‐powered wearable applications. However, their low power density and environmental suitability have extremely restricted their portable applications in complex and mutable environments. Herein, an asymmetric sandwich structure between molybdenum disulfide (MoS2)‐carbonized silks (MCs) and MoS2/MXene–Cottons (MMCs) to construct efficient thermo–hydroelectric generators (THEGs) that synergistically harvest heat‐moisture energy to generate considerable electricity is rationally designed. Notably, the large surface area of MoS2/MXene van der Waals heterojunctions (vdWhs) enables efficient charge collection, and the vertical MoS2 nanosheet arrays supply abundant nanochannels for a highly efficient hydration effect, generating an output power density of 32.26 µW cm−2 after wetting with deionized water. Combined with the sensitive temperature recognition ability with a Seebeck coefficient of 23.5 µV K−1, the application possibilities of these prepared THEGs in the mutual conversion of fingertip temperature/language, and the monitoring of the human physiological state is foresee.
Funder
Fundamental Research Funds for the Central Universities
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
Priority Academic Program Development of Jiangsu Higher Education Institutions
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献