Electro‐Elastic Wetting: A Method to Migrate and Deform Droplets

Author:

Venkata Vidyacharan Gopaluni12,Orth Theodore Rex1,Pan Wenyang1,Amini Amirhossein1,Homsy G. M.13,Liu Tianshu1ORCID

Affiliation:

1. Reality Labs Research Meta Platforms, Inc. Redmond WA 98052 USA

2. Department of Mechanical Engineering University of Colorado Boulder CO 80309 USA

3. Department of Mechanical Engineering University of Washington Seattle WA 98195 USA

Abstract

AbstractA new wetting mechanism, termed electro‐elastic wetting, and methods to exploit it for droplet manipulation are proposed and demonstrated. The system consists of a droplet of dielectric liquid, an elastic and conductive membrane as its shell, and an electrode‐dielectric composite as its substrate. Activation is by an electric field applied between the membrane and the substrate. The equilibrium shape of the droplet is determined by the balance of membrane tension and electrostatic attraction. It is shown that the contact angle of the droplet is governed by a modified Young–Lipmann Equation. It is then demonstrated that it is possible to transport the droplet along a controlled direction, as well as to actively tune its shape, topography, and position by manipulating the spatial distribution of the electrical force.

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3