Interface Engineering Enhances the Photovoltaic Performance of Wide Bandgap FAPbBr3 Perovskite for Application in Low‐Light Environments

Author:

Li Qingyuan12ORCID,Zheng Yifan2ORCID,Guo Xin3,Zhang Guodong24,Ding Guoyu24,Shi Yifeng5,Li Fenghua2,Sun Mengjie12,Shao Yuchuan12

Affiliation:

1. School of Physics and Optoelectronic Engineering Hangzhou Institute for Advanced Study UCAS Hangzhou 310024 P. R. China

2. Key Laboratory of Materials for High‐Power Laser Shanghai Institute of Optics and Fine Mechanics Chinese Academy of Sciences Shanghai 201800 P. R. China

3. School of Microelectronics Dalian University of Technology Dalian 116024 P. R. China

4. Center of Materials Science and Optoelectronics Engineering University of Chinese Academy of Sciences Beijing 100049 P. R. China

5. School of Microelectronics Shanghai University Shanghai 200444 P. R. China

Abstract

AbstractUnderwater solar cells (UWSCs) provide an ideal alternative to the energy supply for long‐endurance autonomous underwater vehicles. However, different from conventional solar cells situated on land or above water, UWSCs give preference to use wide bandgap semiconductors (≥1.8 eV) as light absorber to match underwater solar spectra. Among wide bandgap semiconductors, FAPbBr3 perovskite is under prime consideration owing to its matching optical bandgap (≈2.3 eV), outstanding photoelectric properties, easier processability, etc. Unfortunately, for FAPbBr3 solar cells, substantial interface defects greatly limit the charge carrier extraction efficiency, thus limiting the device performance, especially in underwater low‐light environments. This study employs a molecular self‐assembly strategy to effectively eliminate the interfacial defects. As a result, a great improvement in power conversion efficiency (PCE) from 6.44% to 7.49% is obtained, which is among the best efficiency reported for inverted FAPbBr3 solar cells up to date. Besides, a champion PCE of 30% is obtained under 520 nm monochromatic light irradiation (4.8 mW cm−2). These results demonstrate that FAPbBr3 solar cells present a tremendously promising application in UWSCs.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Reference54 articles.

1. Reviews of power systems and environmental energy conversion for unmanned underwater vehicles

2. Estimation of Solar Energy Harvested for Autonomous Jellyfish Vehicles (AJVs)

3. D. M.Crimmins C. T.Patty M. A.Beliard J.Baker J. C.Jalbert R. J.Komerska S. G.Chappell D. R.Blidberg presented atOCEANS 2006 Boston MA USA2006.

4. Solar spectrum at depth in water

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3